В целом о вакууме и вакуумных системах

Свойства вакуума
Особенности вакуумных систем

Вакуумные материалы и уплотнители

Вакуумные материалы
Уплотнители и и смазки

На заметку

Использование стекла для вакуумной техники
Использование стекла для вакуумной техники - Обезгаживание стекол
Вакуумные материалы и уплотнители - Вакуумные материалы
Оглавление
Использование стекла для вакуумной техники
Физические свойства
Газопроницаемость стекол
Обезгаживание стекол
Все страницы

Проникновение газа сквозь стекло обусловлено его растворимостью в стекле; при этом газ диффундирует в вакуумную систему со скоростью, зависящей от его концентрации и температуры. Газ, молекулы которого заполняют ячейки структурной сетки стекла, создаваемой стеклообразующими группами, называется физически растворенным. Кроме того, в стекле может происходить и химическое растворение — образование газов в результате химических реакций при варке стекла.

Такие процессы в стекле могут привести к растворению крупных молекул, причем в больших количествах. Различными экспериментальными методами, в том числе с помощью инфракрасной спектроскопии, было установлено, что такие газы, как H2O, CO2, O2 и SO2, растворяются в стекле в процессе его изготовления. Пары воды составляют основную часть растворенного газа, причем их растворимость на два порядка превышает растворимость гелия. В отличие от гелия и других физически растворенных газов, концентрация растворенного в стекле водяного пара возрастает с увеличением процентного содержания щелочных модификаторов.

Следовательно, растворимость паров воды в натриевом и свинцовом стеклах значительно превышает растворимость в боросиликатном стекле.

Помимо обычного растворения имеет место адсорбция газа поверхностью стекла. При этом пары воды также составляют основную часть адсорбированного газа и прочно удерживаются стеклом, вероятно, в виде поверхностных гидратов.

Адсорбированные и растворенные молекулы газов образуют существенный источник натекания газа в вакуумных системах, изготовленных из необезгаженного стекла. Наличие таких газов препятствует достижению сверхвысокого вакуума в системе; так, скорость натекания газа в систему, изготовленную из необезгаженного боросиликатного стекла, составляла 10-5Па-м3с-12. Однако это натекание можно значительно уменьшить путем термического обезгаживания.

Еще в ранних исследованиях было обнаружено, что при нагревании стекла в вакууме до температур порядка 200—3000C происходит значительное увеличение газовыделения, которое в процессе последующего нагревания несколько уменьшается, но протекает более устойчиво, причем выделяются в основном пары воды. Этот эффект объясняется тем, что вначале происходит выделение паров воды, адсорбированных поверхностью, а затем — растворенных в объеме.

В работе был сделан обзор результатов многочисленных измерений по десорбции газа из стекла. Значительный интерес представляют результаты работы, которые свидетельствуют о том, что после начального периода быстрого газовыделения последующее выделение газа происходит обратно пропорционально корню квадратному из времени нагревания, что соответствует процессу диффузии.

Кроме того, оказалось, что угол наклона экспериментальных кривых, характеризующий коэффициент диффузии, экспоненциально зависит от температуры и, кроме того, связан с составом стекла. Количество газа (Па*м3м-2), выделяющегося из стекол различного состава, указано в табл. 2.3.

 

Таблица Газовыделение из стекол типа «корнинг»

 Для стеклянного сосуда объемом 1 л представленные данные соответствуют увеличению давления (в Па) в предположении, что газовыделение происходит с поверхности стекла 10 см2.

В процессе выдержки стеклянной системы при высокой температуре в течение 24 ч поверхностно-адсорбированный газ и значительная часть абсорбированного газа выделяются, так что последующая скорость газовыделения при комнатной температуре снижается до величины порядка 1O-12 Па*м3-с-1м2.



 

Добавить комментарий


Защитный код
Обновить

   

 

Сейчас на сайте

Сейчас на сайте находятся:
 50 гостей на сайте

Нов боков адс адаптивный

=
Рейтинг@Mail.ru