В целом о вакууме и вакуумных системах

Свойства вакуума
Особенности вакуумных систем

Вакуумные материалы и уплотнители

Вакуумные материалы
Уплотнители и и смазки

На заметку

Турбомолекулярные насосы
Получение вакуума - Насосы для высокого вакуума
Оглавление
Турбомолекулярные насосы
Страница 2
Страница 3
Все страницы

Быстрота откачки такого насоса относительно низкая и составляет около 10-3 м3с-1. Были предложены различные конструкции насосов этого типа, в частности насос Голвека , в кото ром использован гладкий ротор, а статор снабжен винтовыми желобками правой и левой нарезки. Ширина желобков постоянна, высота же уменьшается от средней части ротора насоса (вход) к его торцам (выход). При вращении статора молекулы откачиваемого газа перемещаются вокруг и вдоль оси насоса. Аналогичная идея использована в конструкции дискового насоса Зигбана, в котором гладкий диск вращается вплотную к поверхности статора, снабженного несколькими спиральными желобками, по которым откачивается газ.

Однако вследствие требований высокой скорости вращения и очень малых зазоров между вращающимися и неподвижными элементами насоса, а также относительно невысокой быстроты откачки, такие конструкции не выпускались в промышленных масштабах.

 Ситуация изменилась в связи с идеей турбомолекулярного насоса, впервые описанной Баккером в 1958 г. Этот насос по своей конструкции напоминает многоступенчатый компрессор или паровую турбину (рис. 3.6, а). Его статор и ротор снабжены лопатками, установленными под определенными углами. Этот насос удовлетворительно функционирует при миллиметровых зазорах между лопатками статора и ротора, что позволяет назначать нежесткие допуски на его изготовление и сборку. Хотя молекулы газа движутся по окружности, в соответствии с направлением движения лопаток, откачка, в отличие от молекулярного насоса, происходит вдоль оси. 

Принцип действия тур-бомолекулярного насоса проиллюстрирован на рис. 3.6, б.

 


 

Рассматривая усредненный поток молекул газа, движущихся в направлении вращающихся лопаток, можно видеть, что их средние относительные скорости будут составлять с направлением вращения довольно острый угол и они будут ударяться о кромку лопатки, как показано на рисунке. В предположении диффузного механизма рассеяния отраженных частиц молекулы, отраженные в пределах угла ?1, будут возвращаться в область 1, тогда как все молекулы, отраженные в пределах угла  ?3, будут попадать в область 2. Молекулы, отразившиеся в пределах угла  ?2, могут оказаться как по ту, так и по другую сторону лопаток.

В аналогичных ситуациях оказываются и молекулы, сталкивающиеся с лопаткой со стороны 2. Вероятность того, что молекулы перейдут с одной стороны лопатки ротора на другую, зависит от соотношения углов, и, как видно из рисунка, вероятность переноса молекул в область 2 намного выше вероятности обратного процесса.

Механизм переноса молекул был исследован с помощью метода Монте-Карло. Оказалось, что зависящая от скорости вращения лопатки и угла ее установки вероятность переноса молекулы из области 1 в область 2 примерно в 10—40 раз больше, чем в обратном направлении.

Однако суммарный поток газа вдоль оси ротора зависит не только от рассмотренных вероятностей, но также от перепада давлений на лопатках. Конструкция, рассчитанная на максимальную быстроту откачки, обычно характеризуется низкой степенью сжатия, и наоборот. Таким образом, приходится идти на компромисс между степенью сжатия и быстротой откачки.

Поскольку молекула, отраженная лопаткой, приобретает тангенциальную составляющую скорости в направлении движения ротора, она будет ударяться о лопатку статора под углом отражения. Но поскольку лопатки статора расположены под противоположным углом по отношению к лопаткам ротора, поток молекул газа будет ускоряться вдоль оси насоса. В реальных конструкциях используются несколько пар ротор — статор; каждая пара образует одну откачивающую ступень.



 

Добавить комментарий


Защитный код
Обновить

   

 

Сейчас на сайте

Сейчас на сайте находятся:
 75 гостей на сайте

Нов боков адс адаптивный

=
Рейтинг@Mail.ru